
P U B L I S H I N G

professional expert ise dist i l led

Microsoft Visio 2010 Business
Process Diagramming and Validation

David J. Parker

Chapter No.2

"Understanding the Microsoft Visio Object
Model"

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.2 "Understanding the Microsoft Visio

Object Model"

A synopsis of the book’s content

Information on where to buy this book

About the Author
David J. Parker explored linking Unix CAD and SQL databases in the early ‘90s for

facilities and cable management, as he was frustrated as an architect in the late ‘80s,

trying to match 3D building models with spreadsheets.

In ‘96 he discovered the ease of linking data to Visio diagrams of personnel and office

layouts. He immediately became one of the first Visio business partners in Europe, and

was soon invited to present his applications at worldwide Visio conferences. He started

his own Visio-based consultancy and development business, bVisual ltd
(http://www.bvisual.net), applying analysis, synthesis, and design to various

graphical information solutions.

He has presented Visio solution provider courses for Microsoft EMEA, adding personal

anecdotes and previous mistakes hoping that all can learn from them.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

He wrote his first book, Visualizing Information with Microsoft Office Visio 2007 (

http://www.visualizinginformation.com), to spread the word about data-linked

diagrams in business, and is currently writing his second book, which is about creating

custom rules for validating structured diagrams in Visio 2010.

David wrote WBS Modeler for Microsoft, which integrates Visio and Project, and many

other Visio solutions for various vertical markets.

David has been regularly awarded Most Valued Professional status for his Visio

community work over the years, and maintains a Visio blog at http://bvisual.

spaces.live.com . Based near to Microsoft UK in Reading, he still sees the need for

Visio evangelism throughout the business and development community.

I would like to thank the Microsoft Visio for continuing to develop such

a great application, and in particular, Stephanie Horn for agreeing to edit

this book. Similarly, I would like to thank my fellow Visio MVP, John

Marshall, for his help and encouragement. Most of all, I would like to

thank my wife, Beena, for allowing me to write another book!

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Microsoft Visio 2010 Business
Process Diagramming and Validation
Once the creators of Aldus PageMaker had delivered Desktop publishing to the masses,

they decided that they could make a smarter diagramming application. Eighteen months

later, they emerged with the Visio product. Now they needed to get a foothold in the

market, so they targeted the leading process flow diagramming package of the day, ABC

FlowCharter, as the one to outdo. They soon achieved their aim to become the number

one flowcharting application and so they went after other usage scenarios, such as

network diagramming, organization charts, and building plans. In 1999, Microsoft bought

Visio Corporation and Visio gradually became Microsoft Office Visio, meaning that all

add-ons had to be written in a certain manner, and the common Microsoft Office core

libraries like the Fluent UI were ever more increasingly employed.

Flowcharting still accounts for 30% of the typical uses that Visio is put to, but the core

product did not substantially enhance its flowcharting abilities. There were some add-ons

that provided rules, perhaps most notably for Data Flow Diagrams (which came and

went); UML and Database Modelling, and many third parties have built whole

flowcharting applications based on Visio. What all of these enhancements have in

common is the imposition of a structure to the diagrams, which necessarily means the

adoption of one rule set or another. There are a lot of competing and complementary rule

sets in use, but what is important is that the chosen rule set fits the purpose it is being

used for, and that it can be understood by other related professionals.

It is true that a picture is worth a thousand words, but the particular thousand words

understood by each individual are more likely to be the same if the picture was created

with commonly available rules. The structured diagramming features and Validation API

in Visio 2010 enable business diagramming rules to be developed, reviewed, and

deployed. The first diagramming types to have these rules applied to are process

flowcharts, reminiscent of the vertical markets attacked by the first versions of Visio

itself, but these rules can and will be extended beyond this discipline.

What This Book Covers
Chapter 1, Overview of Process Management in Microsoft Visio 2010, introduces the

new features that have been added to Microsoft Visio to support structured diagrams and

validation. You will see where Visio fits in the Process Management stack, and explore

the relevant out of the box content.

Chapter 2, Understanding the Microsoft Visio Object Model, explains the Microsoft

Visio 14.0 Type Library and the key objects, collections, and methods in the

programmer's interface of Visio, where relevant for structured diagrams.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 3, Understanding the ShapeSheet™, explains the Microsoft Visio ShapeSheet™

and the key sections, rows, and cells, along with the functions available for writing

ShapeSheet™ formulae, where relevant for structured diagrams.

Chapter 4, Understanding the Validation API, explains the Microsoft Visio Validation

API and the key objects, collections, events, and methods in the programmer's interface

for Visio diagram validation.

Chapter 5, Developing a Validation API Interface, is devoted to building a useful tool,

called Rules Tools, to enable the tasks to be performed easily as Microsoft Visio 2010

does not provide a user interface to the Validation API for rules developers to use.

Chapter 6, Reviewing Validation Rules and Issues, will extend the tool, started in Chapter

5, to provide an import/export routine of rules to an XML fi le or to an HTML report, and

a feature to add issues as annotations in Visio diagrams.

Chapter 7, Creating Validation Rules, will use the tool created in the previous chapter to

create rules for structured diagramming. This chapter will look at common ShapeSheet™

functions that will be useful for rules, and the new Validation functions. It will also go

through different scenarios for creating rules, especially with regard to Filter and Test

Expressions.

Chapter 8, Publishing Validation Rules and Diagrams, will go through different methods

for publishing Visio validation rules for others to use.

Chapter 9, A Worked Example for Data Flow Model Diagrams, presents a complete

cycle for writing validation rules for the Data Flow Model Diagram methodology.

Validation rules are created using the Rules Tools add-in developed in previous chapters,

although alternative VBA code is provided.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft
Visio Object Model

Whatever programming language you code in, you need to understand the objects,
properties, methods, relationships, and events of the application that you are
working with. Without this knowledge, the development process is slow and any
code you use is going to be ineffi cient. Visio is no different, in that it provides the
Visio Type Library with all of its elements, but Visio also has a programmable
ShapeSheet behind every shape. Therefore, the Visio Type Library can only be used
effi ciently if you understand the ShapeSheet, and in turn, the ShapeSheet formulae
can only be used fully if you understand the Visio Type Library.

Also, if you are going to create validation rules to check the relationships and
properties of structured diagrams, then you will need to understand how to traverse
the Visio object model.

 Therefore, this chapter is going to explain the Microsoft Visio 14.0 Type Library
(VisLib.dll), and the key objects, collections, and methods in the programmer's
interface of Visio, and the next chapter will reveal the ShapeSheet.

The Visio Type libraries
 The publicly displayed version number of an application like Visio can be quite
different from the internal version number that is revealed to programmers. For
example, Microsoft Visio 2010 is the public version number for the internal version
number 14. Therefore, programmers need to know that the Visio Type Library
version is 14, although their users will know it as Visio 2010.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[28]

There were no 13 versions prior to 14 because Visio was at version 6
(externally Visio 2000) when Microsoft bought the company in 1999. At
that time, Microsoft Offi ce was internally at version 9, so Microsoft Visio
2002 was internally hiked up to version 10 to be at the same version
number as Microsoft Offi ce 2002. At this point, Microsoft Visio 2003 was
internally version number 11, and Microsoft Visio 2007 was internally
12. Version 13 went the same way as the thirteenth fl oors in high-rise
buildings in the States—pandering to the superstitions of the masses.

 Microsoft Visio 2010 may also install the following type libraries, depending upon
the edition installed.

Name File Visio Editions
Microsoft Visio 14.0 Drawing Control
Library

VisOcx.dll All editions

Microsoft Visio 14.0 Save As Web
Type Library

SaveAsWeb.dll All editions

Microsoft Visio Database Modeling
Engine Type Library

ModelEng.dll Professional and
Premium editions only

Microsoft Visio UML Add-In for
Microsoft Visual C++ 6.0

UmlVC60.dll Professional and
Premium editions only

Microsoft Visio UML Solution for
Visual Basic Type Library

UmlVB.dll Professional and
Premium editions only

In addition, since version 2007, Microsoft Outlook installs the Microsoft Visio
Viewer (Vviewer.dll), which has a useful programming interface itself. It allows
pages, shapes, and data to be explored, even without Visio being installed. It is also
available as a separate, free download from Microsoft, should you wish to use it on
Windows desktops that do not have Microsoft Outlook installed.

But all I need is the object model
 Some programmers think that Visio is present just to provide a graphical canvas
with symbols and lines that they need to manipulate or interrogate. Perhaps they
have been used to draw items in Windows Forms applications or even XAML-based
development with WPF or Silverlight. To think like this is to misunderstand Visio
because Visio has a rich diagramming engine, coupled with the ability to encapsulate
data and custom behaviors in every element, not to mention the inheritance between
certain types of objects. This has resulted in a fairly complex structure in parts of the
object model, so that all of the desired functionality can be described fully.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[29]

Programmers who look at the Visio object model for the fi rst time may be full of pre-
conceptions and look in vain for the X and Y coordinate of a shape on a page. They
are surprised and a little frustrated that the X coordinate of a shape on a page is:

shape.CellsSRC(VisSectionIndices.visSectionObject,
 visRowIndices.visRowXFormOut,
 visCellIndices.visXFormPinX).ResultIU

The SRC part of the CellsSRC method is an acronym for Section Row Column ,
which will be explained later.

There is an alternative shorter form namely:

Shape.Cells("PinX").ResultIU

 However, the shorter form is intrinsically more ineffi cient since the name has to be
interpreted into the SRC indices by Visio anyway. Therefore, it is recommended that
you work with the indices rather than the names, if at all possible.

The Visio object model is quite large, so I shall be selective by only discussing the
parts that I think will assist in understanding and developing validation rules. There
are other type libraries installed with Visio, but these are not relevant to the scope
of this book. In addition, the Visio edition installed has an impact on the Visio type
library itself. For example, the Validation objects and collections are only available
if you have the Premium edition installed, and the Data Linking features are not
available if you have only the Standard edition installed.

The other difference between the different Visio editions is the add-ons, templates,
and stencils installed with it. But as these could be moved around and copied
between users (illegally), their presence (or lack of presence) cannot be relied on to
ascertain the edition installed. One way to ascertain the version is to check a specifi c
registry setting (which is the only way if you are writing an installation script), or
using the CurrentEdition property of the Application object.

HKEY_CURRENT_USER\Software\Microsoft\Office\14.0\Visio\
Application\LicenseCache

The expected values are STD, PRO, or PRM.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[30]

Types of Visio document
 Before we get into the object model, we need to remind ourselves of the formats
and types of Visio documents. Traditionally, Visio used its own binary format
(which usually has an extension *.vsd for drawings), and then the XML format
was introduced (*.vdx for drawings). The latter is approximately ten times larger
in size than the former, although it often compresses to be smaller than the binary
equivalent. The XML format is very verbose because it needs to describe the
complexity of the graphics and the inheritance of elements within the document. In
addition, it is not in the same zipped-up XML fi les in sub-folders format as most of
the Microsoft Offi ce applications.

 The Visio Web Drawing is new in Visio 2010, which, when published to SharePoint
2010, allows certain elements that are linked to data recordsets to be automatically
refreshed when the underlying data is updated, without using Visio. This Visio
Services feature however, does not enable new shapes to be created, moved, or
deleted, or for connections to be varied during the refresh. But it can be edited by
the Visio client application to make these sorts of changes. This new fi le format has a
*.vdw extension, and it contains XAML for rendering in Silverlight (or PNG format
if required), in addition to the Visio document. These Visio fi les can be rendered by
a new standard web part in Microsoft SharePoint 2010, which can be set to refresh
either on a timer event, or manually.

 A Visio drawing document can save its workspace along with it, which usually
means that there is a collection of docked stencils, which contain the shapes
(properly referred to as Masters when they are in a stencil).

 A Visio stencil is just a Visio document with the pages hidden, and is normally saved
with a *.vss extension in the binary format, or *.vsx for the XML format.

A Visio template is just a Visio drawing document saved with a different extension,
*.vst for binary and *.vtx for XML, so that Visio knows that the default action is to
open a copy of it, rather than the original document.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[31]

I mentioned that a stencil is just a Visio document with the drawing pages hidden.
Well a drawing is just a Visio document which normally has its stencil hidden.
However, you can reveal this in the UI with More Shapes/Show Document Stencil.

 Any shape in a page in the document that is an instance of a Master,
must be an instance of a Master in the document stencil. It is not an
instance of a Master in the stencil from which it was originally dragged
and dropped from.

Which programming language should
you use with Visio?
 Microsoft Visio comes with Visual Basic for Applications (VBA) built into it, which
is a very useful interface for exploring the object model, and testing out ideas. In
addition, Visio has a macro recorder that can provide a quick and dirty way of
exploring how some of the actions are performed. However, the resultant code from
the macro recorder can be very verbose in parts, and completely miss out some bits
because Visio is running code inside one of the many Add-ons or COM add-ins that
may be installed.

 If you want to use VBA then you will need to run Visio in Developer Mode by
checking the option available from the Visio Options dialog (use File | Options to
display this), in the Advanced group.

Developer Mode will also add some features to other parts of the Visio interface, such
as additional options on the right-mouse menu when a page and shape is selected.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[32]

The Drawing Explorer window
 The Drawing Explorer window can be opened in the Visio UI in the Show/Hide
group on the Developer tab. It is an extremely useful method for visually navigating
some of the collections and objects in the Visio application.

It starts with the active document object, and displays the Masters, Pages and
Shapes collections, amongst others.

There are two different page collections, Foreground Pages and
Background Pages. You will normally fi nd all of the interesting shapes in
the Foreground Pages collection, since the Background Pages are usually
used for backgrounds and titles.

The Visio object model
 We will now examine some of the key properties of the main objects in the Visio
Type Library. Please note that I have highlighted the collections in the diagrams of
these objects.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[33]

I have also formatted the output in the following code examples as a
table for legibility, because the text will mostly wrap within the
Immediate Window.

The Application object
 The Application object is the root of most collections and objects in Visio, including
the Active objects, two of which are useful for traversing structured diagrams—
ActiveDocument and ActivePage.

 The following sub-function in VBA prints out the salient information to the
Immediate Window:

Public Sub DebugPrintApplication()
Debug.Print "DebugPrintApplication"
 With Visio.Application
 Debug.Print , "ActiveDocument.Name", .ActiveDocument.Name
 Debug.Print , "ActivePage.Name", .ActivePage.Name
 Debug.Print , "Addons.Count", .Addons.Count
 Debug.Print , "COMAddIns.Count", .COMAddIns.Count
 Debug.Print , "CurrentEdition", .CurrentEdition
 Debug.Print , "DataFeaturesEnabled", .DataFeaturesEnabled
 Debug.Print , "Documents.Count", .Documents.Count
 Debug.Print , "TypelibMinorVersion", .TypelibMinorVersion
 Debug.Print , "Version", .Version
 End With
End Sub

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[34]

An example output is:

DebugPrintApplication

ActiveDocument.Name Visio Object Model.vsd

ActivePage.Name The Application Object

Addons.Count 96

COMAddIns.Count 2

CurrentEdition 2

DataFeaturesEnabled True

Documents.Count 7

TypelibMinorVersion 14

Version 14.0

The ActiveDocument and ActivePage objects
 These objects can be referenced from the global object in VBA, but they are only
available via the Application object in other languages.

The Addons collection
 Microsoft writes all of its additional code as C++ add-ons to Visio as Visio Solution
Library fi les (*.vsl), which are standard DLLs with specifi c header information in
them. Others may write them as executable fi les (*.exe), which are generally slower
because they are not running within the Visio process thread.

You can list the Add-ons that are loaded in your Visio installation like this:

Public Sub EnumerateAddons()
Dim adn As Visio.Addon
 Debug.Print "EnumerateAddons : Count = " &
 Application.Addons.Count
 Debug.Print , "Index", "Enabled", "NameU", "Name"
 For Each adn In Application.Addons
 With adn
 Debug.Print , .Index, .Enabled, .NameU, .Name
 End With
 Next
End Sub

This will output a very long list to your Immediate Window, the fi rst few items are
as follows:

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[35]

EnumerateAddons : Count = 96

Index Enabled NameU Name

1 -1 Aec Aec

2 -1 AutoSpaceConvert AutoSpaceConvert

3 -1 AutoSpaceDrop AutoSpaceDrop

4 -1 AutoSpaceResize AutoSpaceResize

5 -1 Move Shapes... Move Shapes...

6 -1 Shape Area and
Perimeter...

Shape Area and
Perimeter...

7 -1 Array Shapes... Array Shapes...

8 -1 Measure Tool Measure Tool

9 -1 BRAINSTORM Brainstorming

10 -1 DB Engineer DB Engineer

11 -1 DBWiz Database Wizard

 Note that the NameU (Universal Name) can be different than the Name property ,
although either can be used if you want to reference a particular add-on to run it.
For example, if you select a shape in Visio, then type the following into the
Immediate Window:

Application.Addons("Shape Area and Perimeter...").Run("")

This will cause the add-on to run, if you have a shape selected.

The COMAddIns collection
 The COMAddIns collection is actually part of the Microsoft Offi ce 14.0 Object Library,
so you will need to set it correctly if you want IntelliSense to work in Visual Studio,
or the VB Editor.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[36]

The following code will enumerate the loaded COMAddins in your Visio application:

Public Sub EnumerateCOMAddIns()
Dim adns As Office.COMAddIns
Dim adn As Office.COMAddIn
 Set adns = Application.COMAddIns
 Debug.Print "EnumerateCOMAddIns"
 Debug.Print , "Description"
 For Each adn In adns
 With adn
 Debug.Print , .Description
 End With
 Next
End Sub

The output in the Immediate Window will be something like this:

EnumerateCOMAddIns : Count = 2

Description

ValidationExplorer

VisioAddIn1

The CurrentEdition property
 Since the Validation object is only in Visio Premium edition, a further check could be
included to ensure that CurrentEdition value is not Standard or Professional. It can
be done using the following command:

If Application.CurrentEdition=visEdition.visEditionPremium Then
....

The DataFeaturesEnabled property
 Data Linking and Data Graphic features are not available in Visio Standard, and
they could be disabled in code, so you could check that this value is True if you want
to interact with these particular features.

The Documents collection
 The Documents collection contains all of the stencils and drawings that are currently
open in the Visio application.

Consider this screenshot of a drawing that has been created from the Software and
Databases | Wireframe Diagram template:

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[37]

How many documents are open? Well, there is one showing, Visio Object Model.
vsd, in the Switch Windows menu on the View tab. There appear to be seven
docked stencils open too.

If you were to run the following code:

Public Sub EnumerateDocuments()
Dim doc As Visio.Document
 Debug.Print "EnumerateDocuments : Count = " &
 Application.Documents.Count
 Debug.Print , "Index", "Type", "ReadOnly", "Name", "Title"
 For Each doc In Application.Documents
 With doc
 Debug.Print , .Index, .Type, .ReadOnly, .Name, .Title
 End With
 Next
End Sub

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[38]

Then you might get output that looks like this:

EnumerateDocuments : Count = 7

Index Type ReadOnly Name Title

1 1 0 Visio Object
Model.vsd

The Visio Object
Model

2 2 -1 WFDLGS_M.VSS Forms and Dialogs

3 2 -1 WFTLBR_M.VSS Toolbars and Menus

4 2 -1 WFCTRL_M.VSS Controls

5 2 -1 WFCRS_M.VSS Cursors

6 2 -1 WFCICN_M.VSS Common Icons

7 2 -1 WFWICN_M.VSS Web and Media Icons

As you can see, there are seven documents in all, one of which is Type = 1
(Drawing) and the rest are Type = 2 (Stencil). The Document Stencil is part of the
Drawing, Visio Object Model.vsd.

The TypelibMinorVersion and Version properties
 It may also be helpful to check the version of Visio, since Validation was not
available prior to Visio 2010:

Application.Version = "14.0"

Or

Application.TypelibMinorVersion = 14

The Document object
 The Application.Documents collection, seen highlighted in the following diagram
contains many Document objects. The Document object contains the collections of
DataRecordsets, Masters, Pages, and other properties, that you may need if you
are validating a document.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[39]

The Advanced Properties object
 The Advanced Properties, which are the document properties in the UI, could be
referenced by the Validation expressions, as follows:

• Category
• Creator displayed as Author in the Properties dialog
• Description displayed as Comments in the Properties dialog
• HyperlinkBase
• Keywords displayed as Tags in the Properties dialog
• Manager
• Subject
• Title

 You can view these values in the backstage panel, and in the Advanced Properties
option on the Properties button.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[40]

Public Sub DebugPrintDocumentAdvancedProperties()
 Debug.Print "DebugPrintDocumentAdvancedProperties : " &
 ActiveDocument.Name
 With ActiveDocument
 Debug.Print , "Title", .Title
 Debug.Print , "Subject", .Subject
 Debug.Print , "Author", .Creator
 Debug.Print , "Manager", .Manager
 Debug.Print , "Company", .Company
 Debug.Print , "Language", .Language
 Debug.Print , "Categories", .category
 Debug.Print , "Tags", .Keywords
 Debug.Print , "Comments", .Description
 Debug.Print , "HyperlinkBase", .HyperlinkBase
 End With
End Sub

The output would be as follows.

DebugPrintDocumentAdvancedProperties : Partial Visio Object Model
and VBA Code.vsd

Title The Visio Object Model

Subject Business Process Diagramming in Visio 2010

Author David J Parker

Manager Stephanie Moss

Company bVisual ltd

Language 1033

Categories Samples

Tags Visio,Object Model,Type Library

Comments This document contains sample VBA code

HyperlinkBase http://www.bvisual.net

The DataRecordsets collection
 If you are using the Data Linking features, then you may want to reference one or
more of the DataRecordsets objects in the document.

Public Sub EnumerateRecordsets()
Dim doc As Visio.Document
Dim dst As Visio.DataRecordset
 Set doc = Application.ActiveDocument
 Debug.Print "EnumerateRecordsets : Count = " &
 doc.DataRecordsets.Count
 Debug.Print , "ID", "DataConnection", "Name"

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[41]

 For Each dst In doc.DataRecordsets
 With dst
 Debug.Print , .ID, .DataConnection, .Name
 End With
 Next
End Sub

The output from the above will be similar to this:

EnumerateRecordsets : Count = 1

ID DataConnection Name

2 2 XLEXTDAT9 DemoData NetworkStatus

Note that the Pivot Diagram feature in Visio creates multiple DataRecordsets
which are not visible in the normal UI.

The DocumentSheet object
 The DocumentSheet object is the ShapeSheet of Documents.

If you wanted to ensure that a document is uniquely identifi able, since its name can
be changed, then you can use the UniqueID property to generate a GUID for the
DocumentSheet, for example where doc is a Document object.

doc.DocumentSheet.UniqueID(VisUniqueIDArgs.visGetOrMakeGUID)

The ID and Index properties
 An ID is assigned to a document when it is added to the Documents collection, and
it will be kept so long as the document stays open, whereas the Index may change if
other documents are closed.

The FullName and Name properties
 The Name property is the fi le name without the path, whilst the FullName is the
whole path, including the Name.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[42]

The Masters collection
 The Document object contains the Masters collection.

Public Sub EnumerateMasters()
Dim doc As Visio.Document
Dim mst As Visio.Master
 Set doc = Application.ActiveDocument
 Debug.Print "EnumerateMasters : Count = " & doc.Masters.Count
 Debug.Print , "ID", "Type", "OneD", "Hidden", "Name"
 For Each mst In doc.Masters
 With mst
 Debug.Print , .ID, .Type, .OneD, .Hidden, .Name
 End With
 Next
End Sub

This code will produce output similar to the following:

EnumerateMasters : Count = 3

ID Type OneD Hidden Name

6 1 0 0 List box

7 1 0 0 List box item

9 1 -1 0 Dynamic connector

The Type=1 is the constant visMasterTypes.visTypeMaster. There are other types
for fi lls, themes, and data graphics but they will usually be hidden to ensure that the
user does not accidently drag-and-drop them off the document stencil in the UI.

The Pages collection
 The Pages collection of the Document object contains all pages in the document,
regardless of type, thus you may need to fi lter by type when you are traversing them.

The following code provides a simple enumeration of the pages:

Public Sub EnumeratePages()
Dim doc As Visio.Document
Dim pag As Visio.Page
 Set doc = Application.ActiveDocument
 Debug.Print "EnumeratePages : Count = " & doc.Pages.Count
 Debug.Print , "Index", "ID", "Type", "Name"
 For Each pag In doc.Pages
 With pag
 Debug.Print , .Index, .ID, .Type, .Name

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[43]

 End With
 Next
End Sub

The output will be similar to this:

EnumeratePages : Count = 4

Index ID Type Name

1 5 1 The Application Object

2 0 1 Page-1

3 4 1 Page-2

4 6 1 Page-4

Notice that the ID property does not need to be contiguous!

The ReadOnly property
 This is a Boolean (True/False) property.

The Type property
 You can test for the type of document in code to ensure that it is the type that
you want.

If doc.Type=VisDocumentTypes.visTypeDrawing Then
...

The other types are visTypeStencil and visTypeTemplate.

The Validation object
 The Validation object provides access to the Validation API and will be discussed at
length in Chapter 4.

The Master object
 When a Master shape is dragged-and-dropped from a stencil onto a page, (or by
using any of the PageDrop methods) then Visio checks the local document stencil to
see if the master already exists.

If a master name exists already and it has not been edited locally, or, even if it has
and the MatchByName property is true, then the shape becomes an instance of the
local master. If it does not exist, then the master is copied from the docked stencil to
the local stencil, so that the shape can become an instance of it.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[44]

 The MatchByName property can be set by editing a master's properties
in the user interface, and changing the Match Master By Name on Drop
checkbox in the Master Properties dialog.

If you open a Master on your local document stencil via Edit Master | Edit Master
Shape, then you can open the Master Explorer window. You can then see that it is
usually composed of a single Shape which often has a Shapes collection within it.

You can do a certain amount of editing to the shape in a local master, and have
these changes propagated to all instances within the document. However, many
users make the assumption that you can simply replace the master in a document to
update the instances. This is not so, although some third-parties have attempted to
make tools that can perform this task.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[45]

The BaseID property
 It is possible that many Masters have been derived from the same root Master, in
which case they would all have the same BaseID.

The Hidden property
If this value is true, then the Master is hidden in the UI, but it still can have shape
instances. This is merely the display position of the Master in the stencil.

The ID, Index, and IndexInStencil properties
An ID is assigned to a master when it is added to the Masters collection, and it will
be kept so long as the document exists. The Index is the read-only ordinal position in
the stencil, but the IndexInStencil controls the display position in the stencil, and
can be modifi ed.

The Name and NameU properties
 The Name property is the displayed name, which could be different to the universal
NameU property.

The PageSheet object
 The PageSheet object is the ShapeSheet of the Master (or a Page).

If you wanted to ensure that a page is uniquely identifi able, since its name can
be changed, then you can use the UniqueID property to generate a GUID for the
PageSheet, for example, where pag is a Page object.

pag.PageSheet.UniqueID(VisUniqueIDArgs.visGetOrMakeGUID)

The Type property
 There are many different types of Master, since they are used to defi ne Data
Graphics, Fills, Lines, and Themes so it can be useful to check fi rst.

If master.Type = Visio,visMasterTypes.visTypeMaster Then
...

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[46]

The Page object
 The Page object contains the Connects, Layers, and most importantly, the
Shapes collections.

The Connects collection
 The page has a Connects collection that contains all of the shape connections in it. A
developer can now use the simpler ConnectedShapes and GluedShapes methods,
described later in this chapter, but it is worth understanding this collection.

In a process diagram, most fl owchart shapes are connected to each other via a
Dynamic Connector shape. So, each Dynamic Connector (which is OneD) shape is
usually connected to a fl owchart shape at each end of it. The cell at the start of the
line is called BeginX, and the cell at the end is called EndX.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[47]

You can iterate the Connects collection with the following code:

Public Sub EnumeratePageConnects()
Dim pag As Visio.Page
Dim con As Visio.Connect
 Set pag = Application.ActivePage
 Debug.Print "EnumeratePageConnects : Count = " &
 pag.Connects.Count
 Debug.Print , "Index", "FromSheet.Name", "FromCell.Name",
 "FromSheet.Text ", _
 "ToSheet.Name", "ToCell.Name", "ToSheet.Text"
 For Each con In pag.Connects
 With con
 Debug.Print , .Index, .FromSheet.Name, .FromCell.Name,
 .FromSheet.Text, _
 .ToSheet.Name, .ToCell.Name, .ToSheet.Text
 End With
 Next
End Sub

This is the fi rst few rows of the example output:

EnumeratePageConnects : Count = 32

Index FromSheet.
Name

FromCell.
Name

FromSheet.
Text

ToSheet.
Name

ToCell.
Name

ToSheet.
Text

1 Dynamic
connector

BeginX Start/End PinY Editorial
Process

2 Dynamic
connector

EndX Document PinY Author
Submits
1st Draft

3 Dynamic
connector.5

BeginX Document PinY Author
Submits
1st Draft

4 Dynamic
connector.5

EndX Decision PinY Editorial
Review

5 Dynamic
connector.7

BeginX Pass Decision PinX Editorial
Review

6 Dynamic
connector.7

EndX Pass Process PinX 1st Draft
Peer
Reviewed

 I have displayed the text on each shape to make it easier to understand, but it is
more likely that you will need to read the Shape Data on each shape in more
complex diagrams.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[48]

The ID and Index properties
 An ID is assigned to a page when it is added to the Pages collection, and it will be
kept, whereas the Index will change if the page order is modifi ed.

The Layers collection
 A page can contain many layers, which can have their Visible and Print setting
toggled, amongst other options. However the display in Silverlight (as contained
in the Visio drawing for web format) does not respect any of these settings. This
is probably because a Visio shape can belong to none or many layers, making the
correlation to XAML very diffi cult.

Users often confuse layers with the display order in the Z-order or index. The
Z-index is controlled by the index of the shape within the page. The Move Forwards,
Move To Front, Move Backwards, and Move to Back commands merely change the
index of the affected shapes. However, Visio 2010 has introduced a new way to
control the display level, which will be discussed in the next chapter.

 The sum of the number of shapes on each layer can be less or greater than the total
number of shapes on a page because a shape can belong to none or multiple layers,
and shapes with subshapes can have different layer membership.

The Drawing Explorer window provides an easy way of viewing the list of shapes
assigned to each layer.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[49]

 You can iterate the layers on a page in code:

Public Sub EnumeratePageLayers()
Dim pag As Visio.Page
Dim lyr As Visio.Layer
 Set pag = Application.ActivePage
 Debug.Print "EnumeratePageLayers : Count = " & pag.Layers.Count
Debug.Print , "Index", "Row", "Visible", "Print", "Name"
 For Each lyr In pag.Layers
 With lyr
 Debug.Print , .Index, .Row,
 .CellsC(VisCellIndices.visLayerVisible),
 .CellsC(VisCellIndices.visLayerPrint), .Name
 End With
 Next
End Sub

This could provide output like this:

EnumeratePageLayers : Count = 7

Index Row Visible Print Name

1 0 1 1 Flowchart

2 1 1 1 Connector

3 2 1 1 Author

4 3 1 1 Editorial Team

5 4 1 1 Author Callout

6 5 1 1 Editorial Team Callout

7 6 1 1 Container

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[50]

 Layers are useful for controlling visibility of shapes assigned to them, and they
provide a way of retrieving a selection of shapes. They can also be part of a
validation expression.

The PageSheet object
 The PageSheet object is the ShapeSheet of the Master (or a Page. See The Master
object section covered previously).

The Reviewer property
 When a user tracks markup using the Review tab in Visio on a page, then a new
page is added to the document Pages collection. This new page provides a canvas
for adding comments and any shapes over the top of the original page, but without
adding anything to the original page.

If a page is a markup page, then the ReviewerID property is available in code. The
ReviewerID is an index into specifi c cells in the DocumentSheet, as you will discover
in the next chapter.

 The following code can be run on a normal (non-markup) page:

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[51]

Public Sub EnumeratePageMarkups()
Dim pag As Visio.Page
Dim pagTest As Visio.Page
 Set pag = Application.ActivePage
 Debug.Print "UserName : " & pag.Application.Settings.UserName
 Debug.Print "UserInitials : " &
 pag.Application.Settings.UserInitials
 Debug.Print "EnumeratePageMarkups for " & pag.Name

 Debug.Print , "Index", "ID", "ReviewerID", "Name"
 For Each pagTest In pag.Document.Pages
 With pagTest
 If .Type = VisPageTypes.visTypeMarkup Then
 If .OriginalPage Is pag Then
 Debug.Print , .Index, .ID, .ReviewerID, .Name
 End If
 End If
 End With
 Next
End Sub

This will produce the following output:

UserName : David J Parker

UserInitials : djp

EnumeratePageMarkups for The Application Object

Index ID ReviewerID Name

5 7 1 The Application Object [djp]

Notice that the markup page name is the same as the OriginalPage.Name, but with
the reviewers initials appended in square brackets.

It is possible to iterate through the comments too, but this requires some
understanding of the ShapeSheet, which comes in the next chapter.

Comments are not displayed in the new Microsoft SharePoint Web Part,
which displays the Visio document for the web format (*.vdw).

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[52]

The Shapes collection
 Each Page, Master, or Shape can have a Shapes collection. The Shapes collections
contains all of the shapes, whether they are instances of a Master, or simple drawn
lines, rectangles, text, and so on.

In this example, I have simply shown how to iterate through the shapes on a page.

Public Sub EnumeratePageShapes()
Dim pag As Visio.Page
Dim shp As Visio.Shape
 Set pag = Application.ActivePage
 Debug.Print "EnumeratePageShapes : Count = " & pag.Shapes.Count
 Debug.Print , "Index", "ID", "Type", "OneD", "Is Instance",
"Name", "Text"
 For Each shp In pag.Shapes
 With shp
 Debug.Print , .Index, .ID, .Type, .OneD, Not .Master Is
Nothing, .Name, .Text
 End With
 Next
End Sub

Here are a few lines from the output as follows:

EnumeratePageShapes : Count = 35

Index ID Type OneD Is
Instance

Name Text

1 34 2 0 True Container 3 Drafting

2 39 2 0 True Container
3.39

Editing

3 44 2 0 True Container
3.44

Production

4 20 5 0 False Sheet.20

5 1 3 0 True Start/End Editorial
Process

6 2 3 0 True Document Author Submits
1st Draft

7 3 3 -1 True Dynamic
connector

8 4 3 0 True Decision Editorial
Review

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[53]

It may be necessary to test that specifi c shapes exist on a page during the
validation process. For example, it may be a requirement that there is a Start and
End fl owchart shape.

The Type property
 There are several types of Page in Visio, namely Foreground, Background and
Markup. Any page in Visio can have an associated Background page, and any
number of associated Markup pages used by reviewers. Therefore, it is usual to
check the page type in code before continuing with any operations on it.

If pag.Type = visPageTypes.visTypeForeground Then
...

The Shape object
 The Shape object is the most important object in the Visio application, and it
needs to be seen as a whole with its member Sections, Rows, and Cells to
understand its complexity.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[54]

Here is a function that prints out basic information about a selected shape into the
Immediate Window in VBA:

Public Sub DebugPrintShape()
If Application.ActiveWindow.Selection.Count = 0 Then
 Exit Sub
End If
Dim shp As Visio.Shape
 Set shp = Application.ActiveWindow.Selection.PrimaryItem
 Debug.Print "DebugPrintShape : " & shp.Name
 With shp
 Debug.Print , "Characters.CharCount", .Characters.CharCount
 Debug.Print , "Connects.Count", .Connects.Count
 Debug.Print , "FromConnects.Count", .FromConnects.Count
 Debug.Print , "Hyperlinks.Count", .Hyperlinks.Count
 Debug.Print , "ID", .ID
 Debug.Print , "Index", .Index
 Debug.Print , "IsCallout", .IsCallout
 Debug.Print , "IsDataGraphicCallout", .IsDataGraphicCallout
 Debug.Print , "LayerCount", .LayerCount
 Debug.Print , "Has Master", Not .Master Is Nothing
 Debug.Print , "Has MasterShape", Not .MasterShape Is Nothing
 Debug.Print , "Name", .Name
 Debug.Print , "NameID", .NameID
 Debug.Print , "NameU", .NameU
 Debug.Print , "OneD", .OneD
 Debug.Print , "Parent.Name", .Parent.Name
 Debug.Print , "Has RootShape", Not .RootShape Is Nothing
 Debug.Print , "Text", .Text
 Debug.Print , "Type", .Type
 End With
End Sub

 This produces the following output in my sample workfl ow as follows, when the
Document shape with the text Author Submits 1st Draft is selected before the code
is run:

DebugPrintShape : Document

Characters.CharCount 24

Connects.Count 0

FromConnects.Count 3

Hyperlinks.Count 0

ID 2

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[55]

DebugPrintShape : Document

Index 6

IsCallout False

IsDataGraphicCallout False

LayerCount 2

Has Master True

Has MasterShape True

Name Document

NameID Sheet.2

NameU Document

OneD 0

Parent.Name Write Chapter Sub-process

Has RootShape True

Text Author Submits 1st Draft

Type 3

The Characters and Text properties
 Every shape in Visio has a text block, regardless of whether there are any characters
in it. This text block can be multiple lines, contain different fonts and formats, and
can even contain references to other cell values. Indeed, if a text block does contain
references to other cells, then the shape.Text property in code will display special
characters instead of the actual value. However, shape.Characters.Text will
return the referenced cell's values. Therefore, it is usually better to use the shape.
Characters.Text property .

The Connects and FromConnects collections
 The Connects collection contains the connections that the source shape is connected
to, whereas the FromConnects collection contains the connections that are connected
to the source shape.

Sounds easy, but it isn't. Traversing a structured diagram using these collections
gets terribly messy, so use the newly added ConnectedShapes and GluedShapes
methods, as described in the Connectivity API section covered later in this chapter.

The Hyperlinks collection
 Hyperlinks can be created in the UI, in code, or even automatically by using Data
Linking. Hyperlinks can contain http:, https:, and even mailto: URLs. Therefore,
you may need to be aware of, and even report on them.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[56]

The ID, Index, NameID, Name, and NameU
properties
 The Index is controlled by the Z-index or Z-order in the user interface (by using Send
To Back, Bring to Front, and so on), whereas the ID is a sequential number that is
assigned when the shape is created. The NameID is concatenation of Sheet and ID.

 The Name and NameU are automatically created, usually as a concatenation of the
Master.Name and ID, and are originally identical. These properties can be modifi ed
(even independently of each other), but they must be unique for the Shapes
collection of the parent. The NameU is the Shapes' locale- independent name, but Name
can be locale- specifi c.

The IsCallout and IsDataGraphicCallout properties
 The IsCallout property is a new property for Visio 2010, implemented so
that you can spot more easily if a shape is one of the new callout shapes. The
IsDataGraphicCallout property was introduced in Visio 2007 so that you can
identify if the parent shape is a Data Graphic shape.

The LayerCount property
 A shape can be a member of none, one, or multiple layers, which can lead to
great complexity. You may wish to have a rule that a shape must only belong to
a single layer.

The Master, MasterShape, and RootShape objects
 A shape in Visio can either be an instance of a Master, that is one that has been
dragged-and-dropped from a stencil, or it is one that is just drawn, like a line,
rectangle, ellipse, or text. You can test this by checking if the shape.Master or
shape.MasterShape object exists (Is Nothing) or not.

If the shape is part of a Master instance, then the RootShape is the top-level shape of
the instance.

The OneD property
 The OneD property is true if the shape is set to behave like a line.

The Parent object
 The Parent property is never Nothing, but it can be either a Page, Master, or Shape.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[57]

Note that the Parent object may also be one of the following Containing properties:

• A shape in Page.Shapes collection always has values for the
ContainingPage and ContainingPageID properties

• A shape in Master.Shapes collection always has values for the
ContainingMaster and ContainingMasterID properties

• A shape in Shape.Shapes collection always has values for the
ContainingShape and ContainingShapeID properties

The Type property
A shape can be a group of other shapes, in which case the shape.Type property will
be equal to VisShapeTypes.visTypeGroup and the shape.Shapes collection will
probably contain other shapes.

There are other shape types too, such as Guide and Ink, but most will be
VisShapeTypes.visTypeShape or VisShapeTypes.visTypeGroup.

The Section object
 Visio ShapeSheets have two types of Sections—fi xed and variable. You can always
rely upon a fi xed Section being present, thus you do not need to test for its existence
before referencing it.

However, some sections are optional (and in the case of Geometry, there may be
multiple occurrences). Therefore, you may need to test for their existence before
referencing them. The most common variable sections that you will need to be aware
of are for Shape Data, User-defi ned Cells, and less often, Hyperlinks. You will learn
more about these in the next chapter.

Use the enum VisSectionIndices in the Visio Type Library to get the right integer
value for the Section.Index property. For example, you could test for the presence
of a Shape Data section in a shape as follows (where shp is a Shape object):

If shp.SectionExists(VisSectionIndices.visSectionProp, VisExistsFlags.
visExistsAnywhere) Then...

You can get the number of Rows in a Section using the RowCount method as follows:

For i = 0 to shp.RowCount(VisSectionIndices.visSectionProp) -1...

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[58]

The Row object
 Sections contain Rows, just like a worksheet in Excel, and each Row contains cells. All
of the interesting information is at the Cell object level.

Take this example where I have selected a Document shape.

I can enumerate through the cells of the Shape Data section using the following code:

Public Sub EnumerateShapePropRows()
If Application.ActiveWindow.Selection.Count = 0 Then
 Exit Sub
End If
Dim shp As Visio.Shape
Dim iRow As Integer
Dim cel As Visio.Cell
 Set shp = Application.ActiveWindow.Selection.PrimaryItem
 Debug.Print "EnumerateShapePropRows : " & shp.Name
 If Not shp.SectionExists(VisSectionIndices.visSectionProp,
 VisExistsFlags.visExistsAnywhere) Then
 Debug.Print , "Does not contain any Shape Data rows"
 Exit Sub
 End If
 With shp
 Debug.Print , "Shape Data row count : ",
 .RowCount(VisSectionIndices.visSectionProp)
 Debug.Print , "Row", "RowName", "Label"
 For iRow = 0 To .RowCount(VisSectionIndices.visSectionProp) - 1
 Set cel = .CellsSRC(VisSectionIndices.visSectionProp,
 iRow, 0)
 Debug.Print , cel.Row, cel.RowName,
 .CellsSRC(VisSectionIndices.visSectionProp, iRow,
 VisCellIndices.visCustPropsLabel).ResultStr("")
 Next iRow
 End With
End Sub

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[59]

This will produce the following output:

EnumerateShapePropRows : Document

Shape Data row count : 7

Row RowName Label

0 Cost Cost

1 ProcessNumber Process Number

2 Owner Owner

3 Function Function

4 StartDate Start Date

5 EndDate End Date

6 Status Status

Notice that I had to use the CellsSRC() method to iterate through the Row, and
that I need to understand what values to use for the third parameter.

Moreover, I know that the RowName is safe to use on the Shape Data section, but
some Sections do not have names for their Rows.

I have also displayed the difference between the RowName and the Label of a Shape
Data row. Note that the RowName cannot contain any special characters or spaces,
whereas Label can.

The Cell object
 We must look a little more closely at the Cell object.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[60]

The Column property
 There are a different number of columns in different Sections of ShapeSheet.
Therefore, you should use the Section specifi c values of the VisCellIndices enum
to refer to a specifi c cell column. For example, the User-defi ned Cells section column
indices begin with visCellIndices.visUser. However, all of the Shape Data
section column indices begin with visCellIndices.visCustProps because Shape
Data used to be called Custom Properties.

The Error property
 If a Cell formula is unable to evaluate, then the Error value is one of the
VisCellError enum values. This value is generated along with the result.

The Formula and FormulaU properties
 Every Cell in Visio can contain a formula. This formula can contain references to
other cells, and because Visio works with multiple languages the Formula string is
the localized version of the FormulaU string, which is in English.

The Name and LocalName properties
 For some languages, the LocalName property may be different to the English
Name property.

The Result properties
 There are quite a few different cell properties that begin .Result because the data
type is agnostic. Generally, you can retrieve text values using the .ResultStr("")
property, and numeric values using the .ResultIU property. IU stands for Internal
Units in this case, but you could also use the .Result("m") property to return a
numeric property formatted in the units of your choice.

Also, be aware that there is a powerful Application.ConvertResult method that
you can use to convert values between units.

The Units property
 This is an integer value from the VisUnitCodes enum.

Iterating through cells
Now that we understand a bit more about the Cell object, we can iterate through
some cells in the Shape Data rows of a selected shape:

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[61]

Public Sub EnumerateShapePropCells()
If Application.ActiveWindow.Selection.Count = 0 Then
 Exit Sub
End If
Dim shp As Visio.Shape
Dim iRow As Integer
Dim iCol As Integer
Dim cel As Visio.Cell
 Set shp = Application.ActiveWindow.Selection.PrimaryItem
 Debug.Print "EnumerateShapePropRows : " & shp.Name
 If Not shp.SectionExists(VisSectionIndices.visSectionProp,
 VisExistsFlags.visExistsAnywhere) Then
 Debug.Print , "Does not contain any Shape Data rows"
 Exit Sub
 End If
 With shp
 Debug.Print , "Shape Data row count : ",
 .RowCount(VisSectionIndices.visSectionProp)
 Debug.Print , "Row", "RowName"
 Debug.Print , , "Column", "Cell.Name", "Cell.Formula",
 "Cell.ResultIU", "Cell.ResultStr("""")"
 For iRow = 0 To .RowCount(VisSectionIndices.visSectionProp)-1
 For iCol = 0 To
 .RowsCellCount(VisSectionIndices.visSectionProp, iRow) - 1
 Set cel = .CellsSRC(VisSectionIndices.visSectionProp,
 iRow, iCol)
 Debug.Print , , iCol, cel.Name, cel.Formula,
 cel.ResultIU, cel.ResultStr("")
 Next iCol
 Next iRow
 End With
End Sub

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[62]

On my selected Document shape, the top of the output looks like this:

EnumerateShapePropRows : Document

Shape Data row count : 7

Row RowName

Column Cell.Name Cell.Formula Cell.
ResultIU

Cell.
ResultStr("")

0 Prop.Cost CY(320,"GBP") 320 £320.00

1 Prop.
Cost.
Prompt

"" 0

2 Prop.
Cost.
Label

"Cost" 0 Cost

3 Prop.
Cost.
Format

"@" 0 @

4 Prop.
Cost.
SortKey

"" 0

5 Prop.
Cost.Type

7 7 7

6 Prop.
Cost.
Invisible

FALSE 0 FALSE

7 Prop.
Cost.
Verify

FALSE 0 FALSE

8 Prop.G7 0 FALSE

9 Prop.H7 0 FALSE

10 Prop.I7 0 FALSE

11 Prop.J7 0 FALSE

12 Prop.K7 0 FALSE

13 Prop.L7 0 FALSE

14 Prop.
Cost.
LangID

1033 1033 1033

15 Prop.
Cost.
Calendar

0 0 0

Cells 8 through 13 stick out because they do not appear in the UI at all. In fact, these
are reserved for internal use or future use by Microsoft, so use them at your peril!

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[63]

Connectivity API
 All of the above sections were to get you used to the object model a bit, so that you
can understand how to traverse a structured diagram and retrieve the information
that you want. The Connectivity API also provides easy methods for creating and
deleting connections, but we are simply interested in traversing connections in order
to check or export the process steps to another application.

Here is the top part of my Write Chapter Sub-process page which demonstrates some
of the key features of the Connectivity API. They are done in the following sequence:

1. The fl ow shapes are connected together creating a logical sequence of steps.
2. Some steps have an associated callout with extra Notes.
3. Some steps are within a Container shape to defi ne the Phase.

 Now we will traverse the diagram in code, and list out the steps in their phases with
any associated notes, but fi rst we need to understand a few of the new methods in
the Connectivity API.

The Shape.ConnectedShapes method
 The Shape.ConnectedShapes method returns an array of identifi ers (IDs) of shapes
that are one degree of separation away from the given shape (that is, separated by a
1-D connector).

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[64]

The method has two arguments, Flags and CategoryFilter.

• Flags: This fi lters the list of returned shape IDs by the directionality of the
connectors, using the VisConnectedShapesFlags enum for All, Incoming, or
Outgoing nodes.

• CategoryFilter: This fi lters the list of returned shape IDs by limiting it to
IDs of shapes that match the specifi ed category. A shape's categories can be
found in the User.msvShapeCategories cell of its ShapeSheet.

So, we can use the new ConnectedShapes method to list all of the signifi cant
connections in my Write Chapter Sub-process page. I have used the existence of the
Prop.Cost cell as a test for shape signifi cance.

Public Sub ListNextConnections()
Dim shp As Visio.Shape
Dim connectorShape As Visio.Shape
Dim sourceShape As Visio.Shape
Dim targetShape As Visio.Shape
Dim aryTargetIDs() As Long
Dim arySourceIDs() As Long
Dim targetID As Long
Dim sourceID As Long
Dim i As Integer
Const CheckProp As String = "Prop.Cost"
For Each shp In Visio.ActivePage.Shapes
 If Not shp.OneD Then
 If shp.CellExists(CheckProp, Visio.visExistsAnywhere) Then
 Debug.Print "Shape", shp.Name, shp.Text
 arySourceIDs =
 shp.ConnectedShapes(visConnectedShapesOutgoingNodes, "")
 For i = 0 To UBound(arySourceIDs)
 Set sourceShape =
 Visio.ActivePage.Shapes.ItemFromID(arySourceIDs(i))
 If sourceShape.CellExists(CheckProp,
 Visio.visExistsAnywhere) Then
 Debug.Print , "<", sourceShape.Name,
 sourceShape.Text
 End If
 Next
 aryTargetIDs =
 shp.ConnectedShapes(visConnectedShapesIncomingNodes, "")
 For i = 0 To UBound(aryTargetIDs)
 Set targetShape =
 Visio.ActivePage.Shapes.ItemFromID(aryTargetIDs(i))
 If targetShape.CellExists(CheckProp,

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[65]

 Visio.visExistsAnywhere) Then
 Debug.Print , ">", targetShape.Name,
 targetShape.Text
 End If
 Next
 End If
 End If
Next

End Sub

 The top of the output from this function will appear as follows:

Shape Start/End Editorial Process

< Document Author Submits 1st Draft

Shape Document Author Submits 1st Draft

< Decision Editorial Review

> Start/End Editorial Process

> Decision Editorial Review

Shape Decision Editorial Review

< Document Author Submits 1st Draft

< Process 1st Draft Peer Reviewed

> Document Author Submits 1st Draft

The Shape.GluedShapes method
 The Shape.GluedShapes method returns an array of identifi ers for the shapes that
are glued to a shape. For instance, if the given shape is a 2-D shape that has multiple
connectors attached to it, this method would return the IDs of those connectors. If the
given shape is a connector, this method would return the IDs of the shapes to which
its ends are glued.

The method has three arguments, Flags, CategoryFilter, and
OtherConnectedShape:

• Flags: This fi lters the list of returned shape IDs by the directionality of
the connectors, using the VisGluedShapesFlags enum for All1D All2D,
Incoming1D, Incoming2D, Outgoing1D, or Outgoing2D nodes.

• CategoryFilter: This fi lters the list of returned shape IDs by limiting it to
IDs of shapes that match the specifi ed category. A shape's categories can be
found in the User.msvShapeCategories cell of its ShapeSheet.

• OtherConnectedShape: Optional additional shape to which returned shapes
must also be glued.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[66]

The method is used as follows :

arIDs = Shape.GluedShapes(Flags, CategoryFilter,
 pOtherConnectedShape)

The Shape.MemberOfContainers property
 We can return an array of IDs of the Containers that a shape is within.

You can use the ID to return the Container shape, get its ContainerProperties
object, and, in this case, return the text from the shape.

Here is a private function that I will use in the main function in the following code:

Private Function getContainerText(ByVal shp As Visio.Shape) As String
'Return text of any containers,
'or an empty string if there are none
Dim aryTargetIDs() As Long
Dim targetShape As Visio.Shape
Dim returnText As String
Dim i As Integer
 returnText = ""
 aryTargetIDs = shp.MemberOfContainers
 On Error GoTo exitHere
 For i = 0 To UBound(aryTargetIDs)
 Set targetShape =
 shp.ContainingPage.Shapes.ItemFromID(aryTargetIDs(i))
 If Len(returnText) = 0 Then
 returnText = targetShape.ContainerProperties.Shape.Text
 Else
 returnText = returnText & vbCrLf &
 targetShape.ContainerProperties.Shape.Text
 End If
 Next

exitHere:
 getContainerText = returnText
End Function

The Shape.CalloutsAssociated property
 This property will return an array of shape IDs of any associated callouts.

You can use the ID to return the callout shape, and, in this case, return the text from
within that shape.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[67]

Here is a private function that I will use in the main function:

Private Function getCalloutText(ByVal shp As Visio.Shape) As String
'Return text of any connected callouts,
'or an empty string if there are none
Dim aryTargetIDs() As Long
Dim targetShape As Visio.Shape
Dim returnText As String
Dim i As Integer
 returnText = ""
 aryTargetIDs = shp.CalloutsAssociated
 On Error GoTo exitHere
 For i = 0 To UBound(aryTargetIDs)
 Set targetShape =
 shp.ContainingPage.Shapes.ItemFromID(aryTargetIDs(i))
 If Len(returnText) = 0 Then
 returnText = targetShape.Characters.Text
 Else
 returnText = returnText & vbCrLf &
 targetShape.Characters.Text
 End If
 Next

exitHere:
 getCalloutText = returnText
End Function

Listing the steps in a process fl ow
In order to create a sequential listing of the steps in the page, we need to create
a function that will call itself to iterate through the connections out from the
source shape.

Private Function getNextConnected(ByVal shp As Visio.Shape, ByVal
dicFlowShapes As Dictionary, ByVal colSteps As Collection) As
Collection
'Return a collection of the next connected steps
Dim aryTargetIDs() As Long
Dim targetShape As Visio.Shape
Dim returnCollection As Collection
Dim i As Integer
 dicFlowShapes.Add shp.NameID, shp

 aryTargetIDs =
 shp.ConnectedShapes(visConnectedShapesOutgoingNodes, "")
 For i = 0 To UBound(aryTargetIDs)

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[68]

 Set targetShape =
 Visio.ActivePage.Shapes.ItemFromID(aryTargetIDs(i))
 If Not targetShape.Master Is Nothing And
 dicFlowShapes.Exists(targetShape.NameID) = False Then
 colSteps.Add targetShape
 getNextConnected targetShape, dicFlowShapes, colSteps
 End If
 Next
 Set getNextConnected = colSteps
End Function

 Finally, we can create the public function that will list the steps. For simplicity, I'm
only following the direct route and not displaying the text on the connector lines.

I have introduced the Visio.Selection object because it contains a collection of
shapes returned by the Page.CreateSelection() method, which is extremely
useful for getting a fi ltered collection of shapes by Layer, Master, Type, and so on.

I am also using the Dictionary object in the following code, so you will
need to ensure that the Microsoft Scripting Runtime library
(C:\Windows\system32\scrun.dll) is ticked in the References
dialog opened from the Tools menu in the Visual Basic user interface.

Public Sub ListProcessSteps()
Dim sel As Visio.Selection
Dim pag As Visio.Page
Dim shp As Visio.Shape
Dim shpStart As Visio.Shape
Dim shpEnd As Visio.Shape
Dim iStep As Integer
Dim dicFlowShapes As Dictionary
 Set dicFlowShapes = New Dictionary
 Set pag = Visio.ActivePage
 'Find the Start and End shapes on the Page
 'Assume that they are the instances of the Master "Start/End"
 'Assume that the Start has no incoming connections
 'and the End shape has no outgoing connections
 Set sel = pag.CreateSelection(visSelTypeByMaster, 0,
 pag.Document.Masters("Start/End"))
 If Not sel.Count = 2 Then
 MsgBox "There must be one Start shape and one End shape
 only", vbExclamation, "ListProcessSteps"
 Exit Sub
 End If

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[69]

 For Each shp In sel
 If shpStart Is Nothing Then
 Set shpStart = shp
 Set shpEnd = shp
 Else
 If UBound(shp.ConnectedShapes(
 visConnectedShapesOutgoingNodes, "")) > -1 _
 And UBound(shp.ConnectedShapes(
 visConnectedShapesIncomingNodes, "")) = -1 Then
 Set shpStart = shp
 ElseIf UBound(shp.ConnectedShapes(
 visConnectedShapesIncomingNodes, "")) > -1 _
 And UBound(shp.ConnectedShapes(
 visConnectedShapesOutgoingNodes, "")) = -1 Then
 Set shpEnd = shp
 End If
 Next
 iStep = 1

Dim nextSteps As Collection
Dim nextShp As Visio.Shape
Dim iNext As Integer
 Set nextSteps = New Collection
 Set nextSteps = getNextConnected(shpStart, dicFlowShapes,
 nextSteps)
 Debug.Print "Step", "Master.Name", "Phase", "Text", "Notes"
 Debug.Print iStep, shpStart.Master.Name,
 getContainerText(shpStart), shpStart.Text,
 getCalloutText(shpStart)
 For iNext = 1 To nextSteps.Count
 iStep = iNext + 1
 Set nextShp = nextSteps.Item(iNext)
 Debug.Print iStep, nextShp.Master.Name,
 getContainerText(nextShp), nextShp.Characters.Text,
 getCalloutText(nextShp)
 Next
 If Not nextShp Is shpEnd Then
 MsgBox "Theprocess did not finish on the End shape",
 vbExclamation, "ListProcessSteps"
 End If
End Sub

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Understanding the Microsoft Visio Object Model

[70]

With a fanfare of trumpets, we get a simple listing of each step in order:

Step Master.Name Phase Text Notes

 1 Start/End Editorial
Process

 2 Document Drafting Author
Submits
1st Draft

This includes suitably
formatted text, images,
code and any other
material

 3 Decision Drafting Editorial
Review

Commissioning Editor
establishes that Chapter
meets the requirements
of the spec, text is
suitably formatted, etc

 4 Process Drafting 1st Draft
Peer
Reviewed

Technical quality of the
material is checked – is
it accurate, informative,
and appropriate to the
level of the audience?

 5 Process Editing Editorial
Acceptance
Verdict

Commissioning Editor
evaluates reviewer
comments to verify that
the Chapter meets the
"Editorial Acceptance"
standard

 6 Process Editing Author
Rewrite

Author addresses
comments, adds any extra
material requested

 7 Process Editing Final Edit

 8 Decision Editing Pass? Finer iterations of
chapter required?

 9 Process Production Production
Phase

Indexing, Layout,
Proofing

 10 Process Production Author
Review of
"PreFinal"
PDF

Author inspects finished
PDF to see if there are
any last minute changes
required and if they are
happy with the chapters

 11 Start/End Publication

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Chapter 2

[71]

Summary
 In this chapter, we delved into the Visio object model, and looked at the hierarchy of
the objects and collections.

We looked at the analytical parts of the Connectivity API, which enabled us to
navigate connections and to retrieve surrounding containers and associated callouts.

We also used this knowledge to build a function that does some rudimentary checks
of a diagram structure, and to list the steps in a process fl ow.

In the next chapter, we will look into the ShapeSheet and how to use the functions
within it.

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book

Where to buy this book
You can buy Microsoft Visio 2010 Business Process Diagramming and Validation from

the Packt Publishing website: https://www.packtpub.com/microsoft-
visio-2010-business-process-diagramming/book

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please

read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and

most internet book retailers.

P U B L I S H I N G

professional expert ise dist i l led

www.PacktPub.com

For More Information:
www.PacktPub.com/microsoft-visio-2010-business-process-

diagramming/book

https://www.packtpub.com/microsoft-visio-2010-business-process-diagramming/book
https://www.packtpub.com/Shippingpolicy

